TP Model-based Robust Stabilization of the 3 Degrees-of-Freedom Aeroelastic Wing Section

نویسندگان

  • Béla Takarics
  • Péter Baranyi
چکیده

Active stabilisation of the 2 and 3 degrees-of-freedom (DoF) aeroelastic wind sections with structural nonlinearities led to various control solutions in the recent years. The paper proposes a control design strategy to stabilise the 3 Dof aeroelastic model. It is assumed that the aeroelastic model has uncertain parameters in the trailing edge dynamics and only one state variable, the pitch angle is measurable, therefore, robust output feedback control solution is derived based on the Tensor Product (TP) type convex representation of the aeroelastic model. The control performance requirements include robust asymptotic stability and constraint on the l2 norm of the control signal. The control performance requirements are formulated in terms of Linear Matrix Inequalities (LMIs). As the first step of the proposed strategy, the TP type model is obtained by executing TP transformation. As the second step, LMI based control design is performed resulting in controller and observer solution defined with the same polytopic structure as the TP type model. The validation and evaluation of the derived control solutions is based on numerical simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of 2-D Aeroelastic Models Based on Indicial Aerodynamic Theory and Vortex Lattice Method in Flutter and Gust Response Determination

Two 2-D aeroelastic models are presented here to determine instability boundary (flutter speed) and gust response of a typical section airfoil with degrees of freedom in pitch and plunge directions. To build these 2-D aeroelastic models, two different aerodynamic theories including Indicial Aerodynamic Theory and Vortex Lattice Method (VLM) have been employed. Also, a 3-D aeroelastic framework ...

متن کامل

Global Asymptotic Stabilization of the Prototypical Aeroelastic Wing Section via Tp Model Transformation

A comprehensive analysis of aeroelastic systems has shown that these systems exhibit a broad class of pathological response regimes when certain types of non-linearities are included. In this paper, we propose a design method of a state-dependent non-linear controller for aeroelastic systems that includes polynomial structural non-linearities. The proposed method is based on recent numerical te...

متن کامل

TP model transformation based observer design to 2-D Aeroelastic System

Abstract: This paper presents a case study how to apply the recently proposed TP model transformation technique, that has been introduced for nonlinear statefeedback control design, to nonlinear observer design. The study is conducted through an example. This example treats the question of observer design to the prototypical aeroelastic wing section with structural nonlinearity. This type of mo...

متن کامل

Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft

This paper presents a study on the coupled aeroelastic/flight dynamic stability and gust response of a blendedwing-body aircraft that derives from the U.S. Air Force’s High Lift-Over-Drag Active (HiLDA) wing experimental model. An effective method is used to model very flexible blended-wing-body vehicles based on a low-order aeroelastic formulation that is capable of capturing the important str...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015